

Campus Asia Program in Osaka University 2018.04.13-2018.06.18

Jae Won Yang

Department of Public Health, Yonsei University Graduate School, Seoul, Korea.

The motive for attending program

- Aging Society
- Korea is rapidly changing into an aging society \rightarrow burden of disease is increasing
- Japan entered an aging society earlier than Korea \rightarrow Many of previous studies were conducted earlier and more widely
- Japanese disease distribution: Cardiovascular disease (CVD), Chronic disease, Metabolic Syndrome (MetS), risk factors
- A field of study: Cardiovascular disease, Chronic disease and their risk factors

What I did

- Attending period: 2018.04.13-2018.06.18
- Department of public health, Osaka University

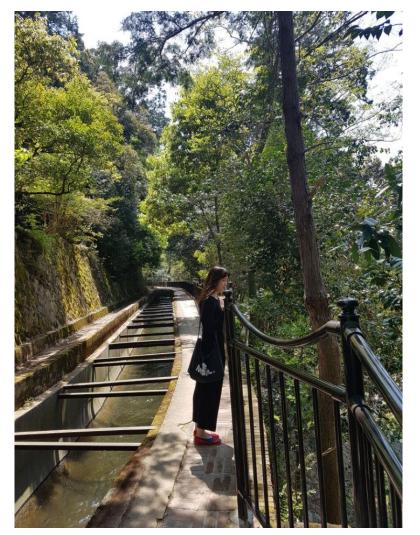
Research activities

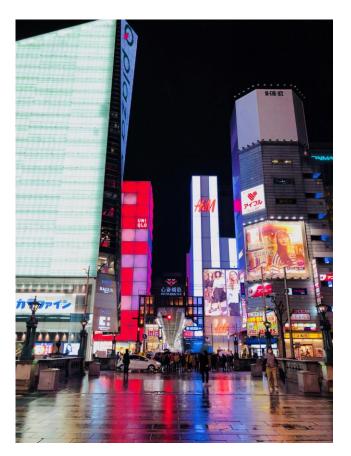
- 16th, Apr Interview with Iso professor
- 26th, Apr Smile treatment study
- 27th, Apr Japan Collaborative Cohort for Evaluation of Cancer Risk (JACC) study Tokyo meeting
- mid of May
 Submission of study proposal
- June Data cleaning with statistical program, arranged statistical analysis
- Participation study meeting
- Every Monday OUSSEP class

Proposal

- Thesis: Association between maternal depression and infant's sleep period
- Data: Environmental influences on Child Health Outcomes
- Infants spend over half of day, by the end of their first year and sleep is known as a major factor affecting infants' development such as cognitive, learning, and physical development.
- Infant sleep patterns develop rapidly over the first year of life, characterized by inconsistency during the first half of the year but stabilizing by the second half.
- It has been reported that infants' sleep pattern may be associated with parental mental health as it significantly impacts their baby's sleep behaviors.

- Furthermore, greater maternal stress has been associated with infants' sleep problems and, among mothers on maternity leave, with longer night wakefulness and shorter day sleep duration.
- Altogether, the above studies suggest both infant characteristics and maternal characteristics can significantly affect the development of infant sleep patterns.
- However, the factors that contribute to sleep period in early neonatal period have not been fully investigated, and the relationships between these factors remain poorly understood.
- The aim of this study was to investigate the association between maternal depression and infants' sleep period.


• Kyoto



Osaka city

• Dormitory

Osaka

• Welcome party

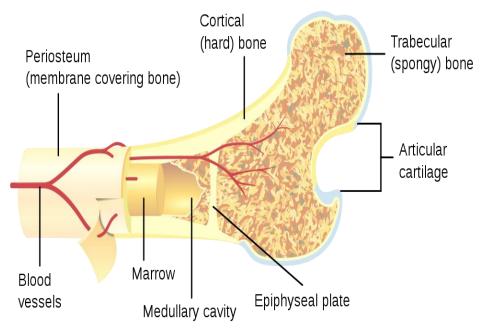
Association between bone mineral density of femur neck and augmentation index in Korean general population : the Cardiovascular and Metabolic Disease Etiology Research Center (CMERC) cohort study

Jae Won Yang¹, Jee-Seon Shim², Hyeon Chang Kim^{2,3}

¹Department of Public Health, Yonsei University Graduate School, Seoul, Korea. ²Cardiovascular and Metabolic Diseases Etiology Research Center, Yonsei University College of Medicine, Seoul, Korea. ³Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.

Introduction

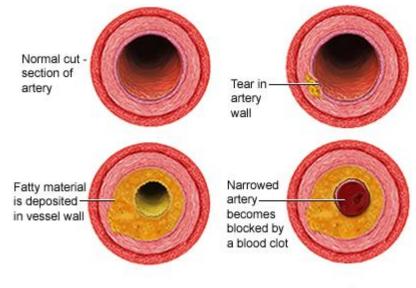
- Low bone mineral density (BMD) and arterial stiffness are major public health problems.
- Previous studies have reported negative association between BMD and arterial stiffness.


Low bone mineral density is associated with increased arterial stiffness in participants of a health records based study (J Thorac Dis. 2015 May; 7(5): 790–798. Ya-Qin Wang et al.)

Association of age-dependent height and bone mineral density decline with increased arterial stiffness and rate of fractures in hypertensive individuals (Journal of Hypertension: April 2015 - Volume 33 - Issue 4 - p 727–735. EL-Bikai, Rana et al.)

- However, links between these conditions have not been fully clarified.
- The aim of this study was to evaluate the association between BMD and Augmentation index (AIx) in a middle-aged Korean population.

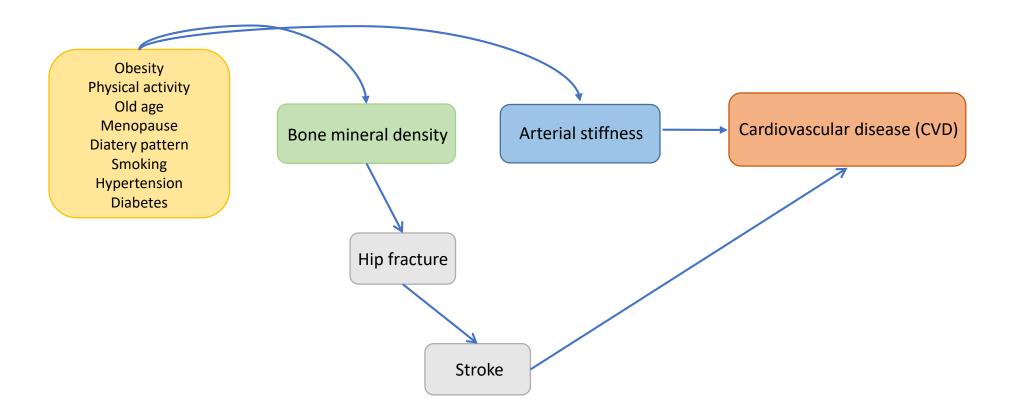
Introduction



✓ Bone mineral density

- The amount of bone mineral in bone tissue.
- T-score/Z-score
- Cortical bone: facilitates bone's main function
- Trabecular bone: suitable for metabolic activity

✓ Arterial stiffness


*ADAM

- Arteries are blood vessels that carry blood from the heart to other places in your body.
- Any condition that slows or stops the flow of blood through your arteries.
- Fatty material → walls of arteries
 → hardening of the arteries

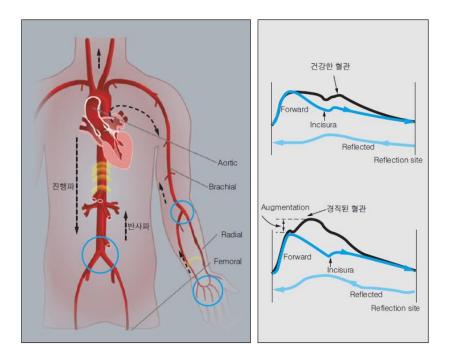
Introduction

✓ DAG (Directed acyclic graph)

Methods

• Study design

Cross-sectional data analysis of a community-based prospective cohort study


Data source

Cardiovascular and Metabolic Disease Etiology Research Center (CMERC) in 2013 and 2017

1,420 men (mean age 50.2) and 2,601 women (mean age 52.1)

Measurements

- Bone mineral density
 - -Total bone, cortical bone and trabecular bone was measured
 - -BMD of femur neck was used
 - -By quantitative computed tomography
- Augmentation index
 - A change in the size of the pulse by reflected waves
 - From radial arterial pulse waves
 - Corrected for a 75 bpm rate

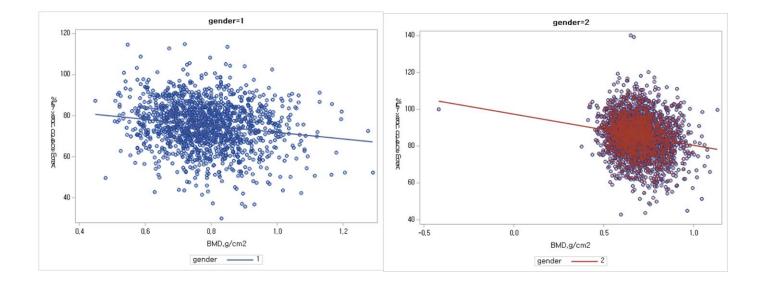
Statistical analysis

• Pearson correlation analysis, ANCOVA (Analysis of covariance), Multiple linear regression analysis

Table 1. Descriptive characteristics of study participants

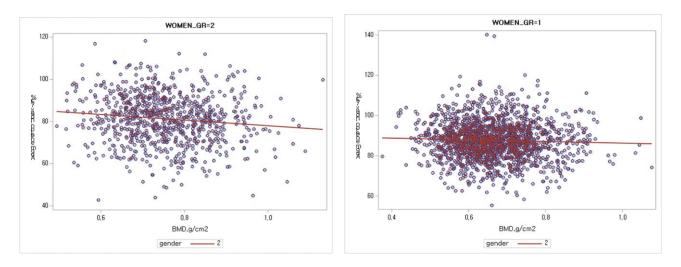
Variables	Men (n=1,420)	Women (n=2,601)	p-value
Age, years	50.2 ± 10.2	52.1 <u>+</u> 8.7	<.0001
Weight,kg	72.7 ± 10.3	58.1 ± 7.8	<.0001
Height,cm	170.8 ± 6.1	157.6 ± 5.2	<.0001
Body mass index,kg/m ²	24.9 <u>+</u> 2.9	23.4 <u>+</u> 3.0	<.0001
Obesity group			<.0001
BMI<23	390 (27.4)	1,293 (49.5)	
23≤BMI<25	376 (26.4)	642 (24.6)	
BMI≥25	660 (46.3)	679 (26.0)	
Waist circumstance,cm	86.7 ± 7.9	78.0 ± 8.2	<.0002
Hip circumstance,cm	95.4 ± 5.3	92.7 ± 5.3	<.000
Thigh circumstance,cm	48.4 ± 4.4	46.8 ± 4.3	<.0002
25-hydroxy vitamin D,ng/mL	15.5 ± 7.0	16.2 ± 9.2	0.011
SBP,mmHg	125.0 ± 13.6	115.3 ± 14.5	<.0002
DBP,mmHg	80.6 ± 9.9	73.9 ± 9.1	<.000
Augmentation index 75,%	75.3 ± -0.2	85.6 ± 10.6	<.0002
Bone minderal density			
BMD,g/cm ³	0.8 ± 0.1	0.7 ± 0.1	<.0002
Hypertension	509 (35.7)	562 (21.5)	<.0002
T2DM	178 (12.5)	194 (7.4)	<.0002
Menopause	-	1,772 (67.8)	
Smoking			<.000
Never	322 (22.6)	2,439 (93.0)	
Past	626 (43.9)	97 (3.7)	
Current	478 (33.5)	78 (3.0)	
Drinking			<.000
Never	118 (8.3)	782 (29.9)	
Past	86 (6.0)	94 (3.6)	
Current	1,222 (85.7)	1,738 (66.5)	

Data are presented as means±standard deviation, numbers (percent).


*p was derived from t-test, chi-square test.

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMD, bone mineral density; T2DM, type 2 dia betes;

	Unad	Unadjusted		Age, BMI adjusted		
	r	<i>p</i> value	r	p value		
Men (n=1,420)	-0.165	<0.001	-0.045	0.088		
Women (n=2,601)	-0.176	<0.001	-0.060	0.002		
Premenopausal (n=838)	-0.120	<0.001	-0.103	0.003		
Postmenopausal (n=1,763)	-0.048	0.046	-0.048	0.044		


Table 2. Correlations between bone mineral density and augmentation index (CMERC, 2013-2017)

	Unadjusted		Age, BMI adjusted		
	r	<i>p</i> value	r	<i>p</i> value	
Men (n=1,420)	-0.165	<0.001	-0.045	0.088	
Women (n=2,601)	-0.176	<0.001	-0.060	0.002	
Premenopausal (n=838)	-0.120	<0.001	-0.103	0.003	
Postmenopausal (n=1,763)	-0.048	0.046	-0.048	0.044	

Table 2. Correlations between bone mineral density and augmentation index (CMERC, 2013-2017)

	Unadjusted		Model1		Model 2	
	β	p value	β	p value	β	<i>p</i> value
Men (n=1,420)						
Bone mass	-15.936	<.0001	-4.101	0.098	-4.673	0.049
aBMD	-4.259	<.0001	-2.535	0.001	-2.604	0.000
vBMD	-0.834	<.0001	-0.468	0.001	-0.505	0.000
Nomen (n=2,601)						
Bone mass	-16.919	<.0001	-6.319	0.002	-5.970	0.002
aBMD	-1.095	0.064	-1.702	0.003	-1.667	0.002
vBMD	-0.600	<.0001	-0.680	<.0001	-0.645	<.0001

Table 3. Association between bone mineral density of femur neck and augmentation index in men and women

Model 1 is adjusted for age and BMI.

Model 2 is adjusted for age, BMI, smoking, drinking, physical activity, systolic blood pressure and menopause status(for women) diabet es status.

	Unadjusted		Mo	Model1		Model 2	
	β	p value	β	<i>p</i> value	β	<i>p</i> value	
Premenopausal (n=838)							
Bone mass	-13.325	0.001	-11.065	0.003	-11.016	0.002	
aBMD	-0.535	0.660	-1.321	0.254	-1.594	0.150	
vBMD	-0.268	0.384	-0.573	0.057	-0.667	0.021	
Postmenopausal (n=1,763)							
Bone mass	-4.441	0.046	-5.029	0.031	-5.580	0.014	
aBMD	-2.002	0.001	-1.928	0.002	-1.805	0.003	
vBMD	-0.757	<.0001	-0.739	<.0001	-0.696	<.0001	

Table 4. Association between bone mineral density and augmentation index 75% according to menopause status

Model 1 is adjusted for age and BMI.

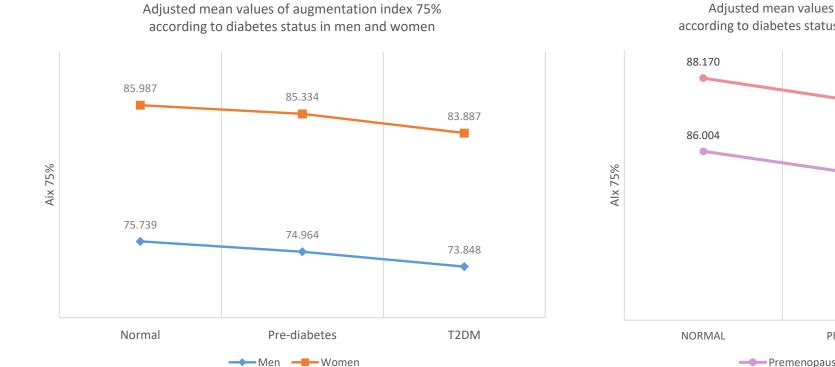
Model 2 is adjusted for age, BMI, smoking, drinking, physical activity, systolic blood pressure, diabetes status.

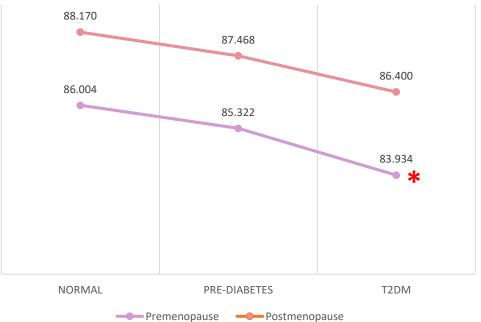
	Unadjusted		Model1		Model 2	
	β	p value	β	p value	β	p value
Normal						
Men (n=1,099)	-10.887	0.000	-3.233	0.267	-4.117	0.141
Women (n=1,624)	-14.035	<.0001	-6.943	0.011	-6.524	0.037
Premenopausal (n=812)	-11.211	0.005	-10.205	0.008	-7.412	0.010
Postmenopausal (n=811)	-7.402	0.049	-6.340	0.101	-5.545	0.141
Osteopenia+Osteoporosis						
Vien (n=321)	-9.861	0.107	-5.746	0.351	-4.826	0.417
Nomen (n=977)	-7.312	0.048	-6.272	0.100	-7.285	0.006
Premenopausal (n=26)	-4.196	0.859	-7.781	0.737	-10.522	0.005
Postmenopausal (n=951)	-7.402	0.049	-6.340	0.101	-4.526	0.034

Table 5 Association between bone mineral density and augmentation index

Model 1 is adjusted for age and BMI.

Model 2 is adjusted for age, BMI, smoking, drinking, physical activity, systolic blood pressure and menopause status(for women) diabetes.


Discussions


- There was a significantly negative association between BMD of femur neck and AIx after adjusting for all covariates women (standardized ß-7.285, p=0.002).
- Even women were divided into subgroups before and after menopause, inverse association remained in premenopausal (standardized ß=-10.522, p=0.002) and postmenopausal women (standardized ß-4.526, p=0.017).
- Previous studies showed negative association in postmenopausal women
 - BMD reaches a peak in early adulthood and generally remains constant until the menopausal transition, after which it declines.
 - Arterial stiffness increases linearly with age
- Stronger negative association was obtained in premenopausal women
 - Bone and vascular development share several common processes
 - collagen degradation in bone and arteries
 - Obesity
 - Diabetes status
 - Components of vascular development

Discussions

Adjusted mean values of augmentation index 75% according to diabetes status in pre/post menopausal women

- Lower BMD was significantly associated with higher AIx in women only, and in particular, stronger negative association was obtained in premenopausal women than postmenopausal women.
- It is estimated that conditions such as obesity and diabetes may have acted as mediators.
- Further studies are needed with considering effects of parameters which could be mediators between BMD and arterial stiffness.

Thank you for your attention